1 /*
2 * Copyright (C) 2007 The Guava Authors
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 package com.google.common.collect;
18
19 import static com.google.common.base.Preconditions.checkNotNull;
20 import static com.google.common.collect.CollectPreconditions.checkNonnegative;
21
22 import com.google.common.annotations.GwtCompatible;
23 import com.google.common.annotations.VisibleForTesting;
24 import com.google.common.base.Function;
25
26 import java.util.ArrayList;
27 import java.util.Arrays;
28 import java.util.Collection;
29 import java.util.Collections;
30 import java.util.Comparator;
31 import java.util.HashSet;
32 import java.util.Iterator;
33 import java.util.List;
34 import java.util.Map;
35 import java.util.NoSuchElementException;
36 import java.util.SortedMap;
37 import java.util.SortedSet;
38 import java.util.TreeSet;
39 import java.util.concurrent.atomic.AtomicInteger;
40
41 import javax.annotation.Nullable;
42
43 /**
44 * A comparator, with additional methods to support common operations. This is
45 * an "enriched" version of {@code Comparator}, in the same sense that {@link
46 * FluentIterable} is an enriched {@link Iterable}.
47 *
48 * <p>The common ways to get an instance of {@code Ordering} are:
49 *
50 * <ul>
51 * <li>Subclass it and implement {@link #compare} instead of implementing
52 * {@link Comparator} directly
53 * <li>Pass a <i>pre-existing</i> {@link Comparator} instance to {@link
54 * #from(Comparator)}
55 * <li>Use the natural ordering, {@link Ordering#natural}
56 * </ul>
57 *
58 * <p>Then you can use the <i>chaining</i> methods to get an altered version of
59 * that {@code Ordering}, including:
60 *
61 * <ul>
62 * <li>{@link #reverse}
63 * <li>{@link #compound(Comparator)}
64 * <li>{@link #onResultOf(Function)}
65 * <li>{@link #nullsFirst} / {@link #nullsLast}
66 * </ul>
67 *
68 * <p>Finally, use the resulting {@code Ordering} anywhere a {@link Comparator}
69 * is required, or use any of its special operations, such as:</p>
70 *
71 * <ul>
72 * <li>{@link #immutableSortedCopy}
73 * <li>{@link #isOrdered} / {@link #isStrictlyOrdered}
74 * <li>{@link #min} / {@link #max}
75 * </ul>
76 *
77 * <p>Except as noted, the orderings returned by the factory methods of this
78 * class are serializable if and only if the provided instances that back them
79 * are. For example, if {@code ordering} and {@code function} can themselves be
80 * serialized, then {@code ordering.onResultOf(function)} can as well.
81 *
82 * <p>See the Guava User Guide article on <a href=
83 * "http://code.google.com/p/guava-libraries/wiki/OrderingExplained">
84 * {@code Ordering}</a>.
85 *
86 * @author Jesse Wilson
87 * @author Kevin Bourrillion
88 * @since 2.0 (imported from Google Collections Library)
89 */
90 @GwtCompatible
91 public abstract class Ordering<T> implements Comparator<T> {
92 // Natural order
93
94 /**
95 * Returns a serializable ordering that uses the natural order of the values.
96 * The ordering throws a {@link NullPointerException} when passed a null
97 * parameter.
98 *
99 * <p>The type specification is {@code <C extends Comparable>}, instead of
100 * the technically correct {@code <C extends Comparable<? super C>>}, to
101 * support legacy types from before Java 5.
102 */
103 @GwtCompatible(serializable = true)
104 @SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this??
105 public static <C extends Comparable> Ordering<C> natural() {
106 return (Ordering<C>) NaturalOrdering.INSTANCE;
107 }
108
109 // Static factories
110
111 /**
112 * Returns an ordering based on an <i>existing</i> comparator instance. Note
113 * that it is unnecessary to create a <i>new</i> anonymous inner class
114 * implementing {@code Comparator} just to pass it in here. Instead, simply
115 * subclass {@code Ordering} and implement its {@code compare} method
116 * directly.
117 *
118 * @param comparator the comparator that defines the order
119 * @return comparator itself if it is already an {@code Ordering}; otherwise
120 * an ordering that wraps that comparator
121 */
122 @GwtCompatible(serializable = true)
123 public static <T> Ordering<T> from(Comparator<T> comparator) {
124 return (comparator instanceof Ordering)
125 ? (Ordering<T>) comparator
126 : new ComparatorOrdering<T>(comparator);
127 }
128
129 /**
130 * Simply returns its argument.
131 *
132 * @deprecated no need to use this
133 */
134 @GwtCompatible(serializable = true)
135 @Deprecated public static <T> Ordering<T> from(Ordering<T> ordering) {
136 return checkNotNull(ordering);
137 }
138
139 /**
140 * Returns an ordering that compares objects according to the order in
141 * which they appear in the given list. Only objects present in the list
142 * (according to {@link Object#equals}) may be compared. This comparator
143 * imposes a "partial ordering" over the type {@code T}. Subsequent changes
144 * to the {@code valuesInOrder} list will have no effect on the returned
145 * comparator. Null values in the list are not supported.
146 *
147 * <p>The returned comparator throws an {@link ClassCastException} when it
148 * receives an input parameter that isn't among the provided values.
149 *
150 * <p>The generated comparator is serializable if all the provided values are
151 * serializable.
152 *
153 * @param valuesInOrder the values that the returned comparator will be able
154 * to compare, in the order the comparator should induce
155 * @return the comparator described above
156 * @throws NullPointerException if any of the provided values is null
157 * @throws IllegalArgumentException if {@code valuesInOrder} contains any
158 * duplicate values (according to {@link Object#equals})
159 */
160 @GwtCompatible(serializable = true)
161 public static <T> Ordering<T> explicit(List<T> valuesInOrder) {
162 return new ExplicitOrdering<T>(valuesInOrder);
163 }
164
165 /**
166 * Returns an ordering that compares objects according to the order in
167 * which they are given to this method. Only objects present in the argument
168 * list (according to {@link Object#equals}) may be compared. This comparator
169 * imposes a "partial ordering" over the type {@code T}. Null values in the
170 * argument list are not supported.
171 *
172 * <p>The returned comparator throws a {@link ClassCastException} when it
173 * receives an input parameter that isn't among the provided values.
174 *
175 * <p>The generated comparator is serializable if all the provided values are
176 * serializable.
177 *
178 * @param leastValue the value which the returned comparator should consider
179 * the "least" of all values
180 * @param remainingValuesInOrder the rest of the values that the returned
181 * comparator will be able to compare, in the order the comparator should
182 * follow
183 * @return the comparator described above
184 * @throws NullPointerException if any of the provided values is null
185 * @throws IllegalArgumentException if any duplicate values (according to
186 * {@link Object#equals(Object)}) are present among the method arguments
187 */
188 @GwtCompatible(serializable = true)
189 public static <T> Ordering<T> explicit(
190 T leastValue, T... remainingValuesInOrder) {
191 return explicit(Lists.asList(leastValue, remainingValuesInOrder));
192 }
193
194 // Ordering<Object> singletons
195
196 /**
197 * Returns an ordering which treats all values as equal, indicating "no
198 * ordering." Passing this ordering to any <i>stable</i> sort algorithm
199 * results in no change to the order of elements. Note especially that {@link
200 * #sortedCopy} and {@link #immutableSortedCopy} are stable, and in the
201 * returned instance these are implemented by simply copying the source list.
202 *
203 * <p>Example: <pre> {@code
204 *
205 * Ordering.allEqual().nullsLast().sortedCopy(
206 * asList(t, null, e, s, null, t, null))}</pre>
207 *
208 * <p>Assuming {@code t}, {@code e} and {@code s} are non-null, this returns
209 * {@code [t, e, s, t, null, null, null]} regardlesss of the true comparison
210 * order of those three values (which might not even implement {@link
211 * Comparable} at all).
212 *
213 * <p><b>Warning:</b> by definition, this comparator is not <i>consistent with
214 * equals</i> (as defined {@linkplain Comparator here}). Avoid its use in
215 * APIs, such as {@link TreeSet#TreeSet(Comparator)}, where such consistency
216 * is expected.
217 *
218 * <p>The returned comparator is serializable.
219 *
220 * @since 13.0
221 */
222 @GwtCompatible(serializable = true)
223 @SuppressWarnings("unchecked")
224 public static Ordering<Object> allEqual() {
225 return AllEqualOrdering.INSTANCE;
226 }
227
228 /**
229 * Returns an ordering that compares objects by the natural ordering of their
230 * string representations as returned by {@code toString()}. It does not
231 * support null values.
232 *
233 * <p>The comparator is serializable.
234 */
235 @GwtCompatible(serializable = true)
236 public static Ordering<Object> usingToString() {
237 return UsingToStringOrdering.INSTANCE;
238 }
239
240 /**
241 * Returns an arbitrary ordering over all objects, for which {@code compare(a,
242 * b) == 0} implies {@code a == b} (identity equality). There is no meaning
243 * whatsoever to the order imposed, but it is constant for the life of the VM.
244 *
245 * <p>Because the ordering is identity-based, it is not "consistent with
246 * {@link Object#equals(Object)}" as defined by {@link Comparator}. Use
247 * caution when building a {@link SortedSet} or {@link SortedMap} from it, as
248 * the resulting collection will not behave exactly according to spec.
249 *
250 * <p>This ordering is not serializable, as its implementation relies on
251 * {@link System#identityHashCode(Object)}, so its behavior cannot be
252 * preserved across serialization.
253 *
254 * @since 2.0
255 */
256 public static Ordering<Object> arbitrary() {
257 return ArbitraryOrderingHolder.ARBITRARY_ORDERING;
258 }
259
260 private static class ArbitraryOrderingHolder {
261 static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering();
262 }
263
264 @VisibleForTesting static class ArbitraryOrdering extends Ordering<Object> {
265 @SuppressWarnings("deprecation") // TODO(kevinb): ?
266 private Map<Object, Integer> uids =
267 Platform.tryWeakKeys(new MapMaker()).makeComputingMap(
268 new Function<Object, Integer>() {
269 final AtomicInteger counter = new AtomicInteger(0);
270 @Override
271 public Integer apply(Object from) {
272 return counter.getAndIncrement();
273 }
274 });
275
276 @Override public int compare(Object left, Object right) {
277 if (left == right) {
278 return 0;
279 } else if (left == null) {
280 return -1;
281 } else if (right == null) {
282 return 1;
283 }
284 int leftCode = identityHashCode(left);
285 int rightCode = identityHashCode(right);
286 if (leftCode != rightCode) {
287 return leftCode < rightCode ? -1 : 1;
288 }
289
290 // identityHashCode collision (rare, but not as rare as you'd think)
291 int result = uids.get(left).compareTo(uids.get(right));
292 if (result == 0) {
293 throw new AssertionError(); // extremely, extremely unlikely.
294 }
295 return result;
296 }
297
298 @Override public String toString() {
299 return "Ordering.arbitrary()";
300 }
301
302 /*
303 * We need to be able to mock identityHashCode() calls for tests, because it
304 * can take 1-10 seconds to find colliding objects. Mocking frameworks that
305 * can do magic to mock static method calls still can't do so for a system
306 * class, so we need the indirection. In production, Hotspot should still
307 * recognize that the call is 1-morphic and should still be willing to
308 * inline it if necessary.
309 */
310 int identityHashCode(Object object) {
311 return System.identityHashCode(object);
312 }
313 }
314
315 // Constructor
316
317 /**
318 * Constructs a new instance of this class (only invokable by the subclass
319 * constructor, typically implicit).
320 */
321 protected Ordering() {}
322
323 // Instance-based factories (and any static equivalents)
324
325 /**
326 * Returns the reverse of this ordering; the {@code Ordering} equivalent to
327 * {@link Collections#reverseOrder(Comparator)}.
328 */
329 // type parameter <S> lets us avoid the extra <String> in statements like:
330 // Ordering<String> o = Ordering.<String>natural().reverse();
331 @GwtCompatible(serializable = true)
332 public <S extends T> Ordering<S> reverse() {
333 return new ReverseOrdering<S>(this);
334 }
335
336 /**
337 * Returns an ordering that treats {@code null} as less than all other values
338 * and uses {@code this} to compare non-null values.
339 */
340 // type parameter <S> lets us avoid the extra <String> in statements like:
341 // Ordering<String> o = Ordering.<String>natural().nullsFirst();
342 @GwtCompatible(serializable = true)
343 public <S extends T> Ordering<S> nullsFirst() {
344 return new NullsFirstOrdering<S>(this);
345 }
346
347 /**
348 * Returns an ordering that treats {@code null} as greater than all other
349 * values and uses this ordering to compare non-null values.
350 */
351 // type parameter <S> lets us avoid the extra <String> in statements like:
352 // Ordering<String> o = Ordering.<String>natural().nullsLast();
353 @GwtCompatible(serializable = true)
354 public <S extends T> Ordering<S> nullsLast() {
355 return new NullsLastOrdering<S>(this);
356 }
357
358 /**
359 * Returns a new ordering on {@code F} which orders elements by first applying
360 * a function to them, then comparing those results using {@code this}. For
361 * example, to compare objects by their string forms, in a case-insensitive
362 * manner, use: <pre> {@code
363 *
364 * Ordering.from(String.CASE_INSENSITIVE_ORDER)
365 * .onResultOf(Functions.toStringFunction())}</pre>
366 */
367 @GwtCompatible(serializable = true)
368 public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) {
369 return new ByFunctionOrdering<F, T>(function, this);
370 }
371
372 <T2 extends T> Ordering<Map.Entry<T2, ?>> onKeys() {
373 return onResultOf(Maps.<T2>keyFunction());
374 }
375
376 /**
377 * Returns an ordering which first uses the ordering {@code this}, but which
378 * in the event of a "tie", then delegates to {@code secondaryComparator}.
379 * For example, to sort a bug list first by status and second by priority, you
380 * might use {@code byStatus.compound(byPriority)}. For a compound ordering
381 * with three or more components, simply chain multiple calls to this method.
382 *
383 * <p>An ordering produced by this method, or a chain of calls to this method,
384 * is equivalent to one created using {@link Ordering#compound(Iterable)} on
385 * the same component comparators.
386 */
387 @GwtCompatible(serializable = true)
388 public <U extends T> Ordering<U> compound(
389 Comparator<? super U> secondaryComparator) {
390 return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator));
391 }
392
393 /**
394 * Returns an ordering which tries each given comparator in order until a
395 * non-zero result is found, returning that result, and returning zero only if
396 * all comparators return zero. The returned ordering is based on the state of
397 * the {@code comparators} iterable at the time it was provided to this
398 * method.
399 *
400 * <p>The returned ordering is equivalent to that produced using {@code
401 * Ordering.from(comp1).compound(comp2).compound(comp3) . . .}.
402 *
403 * <p><b>Warning:</b> Supplying an argument with undefined iteration order,
404 * such as a {@link HashSet}, will produce non-deterministic results.
405 *
406 * @param comparators the comparators to try in order
407 */
408 @GwtCompatible(serializable = true)
409 public static <T> Ordering<T> compound(
410 Iterable<? extends Comparator<? super T>> comparators) {
411 return new CompoundOrdering<T>(comparators);
412 }
413
414 /**
415 * Returns a new ordering which sorts iterables by comparing corresponding
416 * elements pairwise until a nonzero result is found; imposes "dictionary
417 * order". If the end of one iterable is reached, but not the other, the
418 * shorter iterable is considered to be less than the longer one. For example,
419 * a lexicographical natural ordering over integers considers {@code
420 * [] < [1] < [1, 1] < [1, 2] < [2]}.
421 *
422 * <p>Note that {@code ordering.lexicographical().reverse()} is not
423 * equivalent to {@code ordering.reverse().lexicographical()} (consider how
424 * each would order {@code [1]} and {@code [1, 1]}).
425 *
426 * @since 2.0
427 */
428 @GwtCompatible(serializable = true)
429 // type parameter <S> lets us avoid the extra <String> in statements like:
430 // Ordering<Iterable<String>> o =
431 // Ordering.<String>natural().lexicographical();
432 public <S extends T> Ordering<Iterable<S>> lexicographical() {
433 /*
434 * Note that technically the returned ordering should be capable of
435 * handling not just {@code Iterable<S>} instances, but also any {@code
436 * Iterable<? extends S>}. However, the need for this comes up so rarely
437 * that it doesn't justify making everyone else deal with the very ugly
438 * wildcard.
439 */
440 return new LexicographicalOrdering<S>(this);
441 }
442
443 // Regular instance methods
444
445 // Override to add @Nullable
446 @Override public abstract int compare(@Nullable T left, @Nullable T right);
447
448 /**
449 * Returns the least of the specified values according to this ordering. If
450 * there are multiple least values, the first of those is returned. The
451 * iterator will be left exhausted: its {@code hasNext()} method will return
452 * {@code false}.
453 *
454 * @param iterator the iterator whose minimum element is to be determined
455 * @throws NoSuchElementException if {@code iterator} is empty
456 * @throws ClassCastException if the parameters are not <i>mutually
457 * comparable</i> under this ordering.
458 *
459 * @since 11.0
460 */
461 public <E extends T> E min(Iterator<E> iterator) {
462 // let this throw NoSuchElementException as necessary
463 E minSoFar = iterator.next();
464
465 while (iterator.hasNext()) {
466 minSoFar = min(minSoFar, iterator.next());
467 }
468
469 return minSoFar;
470 }
471
472 /**
473 * Returns the least of the specified values according to this ordering. If
474 * there are multiple least values, the first of those is returned.
475 *
476 * @param iterable the iterable whose minimum element is to be determined
477 * @throws NoSuchElementException if {@code iterable} is empty
478 * @throws ClassCastException if the parameters are not <i>mutually
479 * comparable</i> under this ordering.
480 */
481 public <E extends T> E min(Iterable<E> iterable) {
482 return min(iterable.iterator());
483 }
484
485 /**
486 * Returns the lesser of the two values according to this ordering. If the
487 * values compare as 0, the first is returned.
488 *
489 * <p><b>Implementation note:</b> this method is invoked by the default
490 * implementations of the other {@code min} overloads, so overriding it will
491 * affect their behavior.
492 *
493 * @param a value to compare, returned if less than or equal to b.
494 * @param b value to compare.
495 * @throws ClassCastException if the parameters are not <i>mutually
496 * comparable</i> under this ordering.
497 */
498 public <E extends T> E min(@Nullable E a, @Nullable E b) {
499 return (compare(a, b) <= 0) ? a : b;
500 }
501
502 /**
503 * Returns the least of the specified values according to this ordering. If
504 * there are multiple least values, the first of those is returned.
505 *
506 * @param a value to compare, returned if less than or equal to the rest.
507 * @param b value to compare
508 * @param c value to compare
509 * @param rest values to compare
510 * @throws ClassCastException if the parameters are not <i>mutually
511 * comparable</i> under this ordering.
512 */
513 public <E extends T> E min(
514 @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
515 E minSoFar = min(min(a, b), c);
516
517 for (E r : rest) {
518 minSoFar = min(minSoFar, r);
519 }
520
521 return minSoFar;
522 }
523
524 /**
525 * Returns the greatest of the specified values according to this ordering. If
526 * there are multiple greatest values, the first of those is returned. The
527 * iterator will be left exhausted: its {@code hasNext()} method will return
528 * {@code false}.
529 *
530 * @param iterator the iterator whose maximum element is to be determined
531 * @throws NoSuchElementException if {@code iterator} is empty
532 * @throws ClassCastException if the parameters are not <i>mutually
533 * comparable</i> under this ordering.
534 *
535 * @since 11.0
536 */
537 public <E extends T> E max(Iterator<E> iterator) {
538 // let this throw NoSuchElementException as necessary
539 E maxSoFar = iterator.next();
540
541 while (iterator.hasNext()) {
542 maxSoFar = max(maxSoFar, iterator.next());
543 }
544
545 return maxSoFar;
546 }
547
548 /**
549 * Returns the greatest of the specified values according to this ordering. If
550 * there are multiple greatest values, the first of those is returned.
551 *
552 * @param iterable the iterable whose maximum element is to be determined
553 * @throws NoSuchElementException if {@code iterable} is empty
554 * @throws ClassCastException if the parameters are not <i>mutually
555 * comparable</i> under this ordering.
556 */
557 public <E extends T> E max(Iterable<E> iterable) {
558 return max(iterable.iterator());
559 }
560
561 /**
562 * Returns the greater of the two values according to this ordering. If the
563 * values compare as 0, the first is returned.
564 *
565 * <p><b>Implementation note:</b> this method is invoked by the default
566 * implementations of the other {@code max} overloads, so overriding it will
567 * affect their behavior.
568 *
569 * @param a value to compare, returned if greater than or equal to b.
570 * @param b value to compare.
571 * @throws ClassCastException if the parameters are not <i>mutually
572 * comparable</i> under this ordering.
573 */
574 public <E extends T> E max(@Nullable E a, @Nullable E b) {
575 return (compare(a, b) >= 0) ? a : b;
576 }
577
578 /**
579 * Returns the greatest of the specified values according to this ordering. If
580 * there are multiple greatest values, the first of those is returned.
581 *
582 * @param a value to compare, returned if greater than or equal to the rest.
583 * @param b value to compare
584 * @param c value to compare
585 * @param rest values to compare
586 * @throws ClassCastException if the parameters are not <i>mutually
587 * comparable</i> under this ordering.
588 */
589 public <E extends T> E max(
590 @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
591 E maxSoFar = max(max(a, b), c);
592
593 for (E r : rest) {
594 maxSoFar = max(maxSoFar, r);
595 }
596
597 return maxSoFar;
598 }
599
600 /**
601 * Returns the {@code k} least elements of the given iterable according to
602 * this ordering, in order from least to greatest. If there are fewer than
603 * {@code k} elements present, all will be included.
604 *
605 * <p>The implementation does not necessarily use a <i>stable</i> sorting
606 * algorithm; when multiple elements are equivalent, it is undefined which
607 * will come first.
608 *
609 * @return an immutable {@code RandomAccess} list of the {@code k} least
610 * elements in ascending order
611 * @throws IllegalArgumentException if {@code k} is negative
612 * @since 8.0
613 */
614 public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) {
615 if (iterable instanceof Collection) {
616 Collection<E> collection = (Collection<E>) iterable;
617 if (collection.size() <= 2L * k) {
618 // In this case, just dumping the collection to an array and sorting is
619 // faster than using the implementation for Iterator, which is
620 // specialized for k much smaller than n.
621
622 @SuppressWarnings("unchecked") // c only contains E's and doesn't escape
623 E[] array = (E[]) collection.toArray();
624 Arrays.sort(array, this);
625 if (array.length > k) {
626 array = ObjectArrays.arraysCopyOf(array, k);
627 }
628 return Collections.unmodifiableList(Arrays.asList(array));
629 }
630 }
631 return leastOf(iterable.iterator(), k);
632 }
633
634 /**
635 * Returns the {@code k} least elements from the given iterator according to
636 * this ordering, in order from least to greatest. If there are fewer than
637 * {@code k} elements present, all will be included.
638 *
639 * <p>The implementation does not necessarily use a <i>stable</i> sorting
640 * algorithm; when multiple elements are equivalent, it is undefined which
641 * will come first.
642 *
643 * @return an immutable {@code RandomAccess} list of the {@code k} least
644 * elements in ascending order
645 * @throws IllegalArgumentException if {@code k} is negative
646 * @since 14.0
647 */
648 public <E extends T> List<E> leastOf(Iterator<E> elements, int k) {
649 checkNotNull(elements);
650 checkNonnegative(k, "k");
651
652 if (k == 0 || !elements.hasNext()) {
653 return ImmutableList.of();
654 } else if (k >= Integer.MAX_VALUE / 2) {
655 // k is really large; just do a straightforward sorted-copy-and-sublist
656 ArrayList<E> list = Lists.newArrayList(elements);
657 Collections.sort(list, this);
658 if (list.size() > k) {
659 list.subList(k, list.size()).clear();
660 }
661 list.trimToSize();
662 return Collections.unmodifiableList(list);
663 }
664
665 /*
666 * Our goal is an O(n) algorithm using only one pass and O(k) additional
667 * memory.
668 *
669 * We use the following algorithm: maintain a buffer of size 2*k. Every time
670 * the buffer gets full, find the median and partition around it, keeping
671 * only the lowest k elements. This requires n/k find-median-and-partition
672 * steps, each of which take O(k) time with a traditional quickselect.
673 *
674 * After sorting the output, the whole algorithm is O(n + k log k). It
675 * degrades gracefully for worst-case input (descending order), performs
676 * competitively or wins outright for randomly ordered input, and doesn't
677 * require the whole collection to fit into memory.
678 */
679 int bufferCap = k * 2;
680 @SuppressWarnings("unchecked") // we'll only put E's in
681 E[] buffer = (E[]) new Object[bufferCap];
682 E threshold = elements.next();
683 buffer[0] = threshold;
684 int bufferSize = 1;
685 // threshold is the kth smallest element seen so far. Once bufferSize >= k,
686 // anything larger than threshold can be ignored immediately.
687
688 while (bufferSize < k && elements.hasNext()) {
689 E e = elements.next();
690 buffer[bufferSize++] = e;
691 threshold = max(threshold, e);
692 }
693
694 while (elements.hasNext()) {
695 E e = elements.next();
696 if (compare(e, threshold) >= 0) {
697 continue;
698 }
699
700 buffer[bufferSize++] = e;
701 if (bufferSize == bufferCap) {
702 // We apply the quickselect algorithm to partition about the median,
703 // and then ignore the last k elements.
704 int left = 0;
705 int right = bufferCap - 1;
706
707 int minThresholdPosition = 0;
708 // The leftmost position at which the greatest of the k lower elements
709 // -- the new value of threshold -- might be found.
710
711 while (left < right) {
712 int pivotIndex = (left + right + 1) >>> 1;
713 int pivotNewIndex = partition(buffer, left, right, pivotIndex);
714 if (pivotNewIndex > k) {
715 right = pivotNewIndex - 1;
716 } else if (pivotNewIndex < k) {
717 left = Math.max(pivotNewIndex, left + 1);
718 minThresholdPosition = pivotNewIndex;
719 } else {
720 break;
721 }
722 }
723 bufferSize = k;
724
725 threshold = buffer[minThresholdPosition];
726 for (int i = minThresholdPosition + 1; i < bufferSize; i++) {
727 threshold = max(threshold, buffer[i]);
728 }
729 }
730 }
731
732 Arrays.sort(buffer, 0, bufferSize, this);
733
734 bufferSize = Math.min(bufferSize, k);
735 return Collections.unmodifiableList(
736 Arrays.asList(ObjectArrays.arraysCopyOf(buffer, bufferSize)));
737 // We can't use ImmutableList; we have to be null-friendly!
738 }
739
740 private <E extends T> int partition(
741 E[] values, int left, int right, int pivotIndex) {
742 E pivotValue = values[pivotIndex];
743
744 values[pivotIndex] = values[right];
745 values[right] = pivotValue;
746
747 int storeIndex = left;
748 for (int i = left; i < right; i++) {
749 if (compare(values[i], pivotValue) < 0) {
750 ObjectArrays.swap(values, storeIndex, i);
751 storeIndex++;
752 }
753 }
754 ObjectArrays.swap(values, right, storeIndex);
755 return storeIndex;
756 }
757
758 /**
759 * Returns the {@code k} greatest elements of the given iterable according to
760 * this ordering, in order from greatest to least. If there are fewer than
761 * {@code k} elements present, all will be included.
762 *
763 * <p>The implementation does not necessarily use a <i>stable</i> sorting
764 * algorithm; when multiple elements are equivalent, it is undefined which
765 * will come first.
766 *
767 * @return an immutable {@code RandomAccess} list of the {@code k} greatest
768 * elements in <i>descending order</i>
769 * @throws IllegalArgumentException if {@code k} is negative
770 * @since 8.0
771 */
772 public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) {
773 // TODO(kevinb): see if delegation is hurting performance noticeably
774 // TODO(kevinb): if we change this implementation, add full unit tests.
775 return reverse().leastOf(iterable, k);
776 }
777
778 /**
779 * Returns the {@code k} greatest elements from the given iterator according to
780 * this ordering, in order from greatest to least. If there are fewer than
781 * {@code k} elements present, all will be included.
782 *
783 * <p>The implementation does not necessarily use a <i>stable</i> sorting
784 * algorithm; when multiple elements are equivalent, it is undefined which
785 * will come first.
786 *
787 * @return an immutable {@code RandomAccess} list of the {@code k} greatest
788 * elements in <i>descending order</i>
789 * @throws IllegalArgumentException if {@code k} is negative
790 * @since 14.0
791 */
792 public <E extends T> List<E> greatestOf(Iterator<E> iterator, int k) {
793 return reverse().leastOf(iterator, k);
794 }
795
796 /**
797 * Returns a <b>mutable</b> list containing {@code elements} sorted by this
798 * ordering; use this only when the resulting list may need further
799 * modification, or may contain {@code null}. The input is not modified. The
800 * returned list is serializable and has random access.
801 *
802 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
803 * elements that are duplicates according to the comparator. The sort
804 * performed is <i>stable</i>, meaning that such elements will appear in the
805 * returned list in the same order they appeared in {@code elements}.
806 *
807 * <p><b>Performance note:</b> According to our
808 * benchmarking
809 * on Open JDK 7, {@link #immutableSortedCopy} generally performs better (in
810 * both time and space) than this method, and this method in turn generally
811 * performs better than copying the list and calling {@link
812 * Collections#sort(List)}.
813 */
814 public <E extends T> List<E> sortedCopy(Iterable<E> elements) {
815 @SuppressWarnings("unchecked") // does not escape, and contains only E's
816 E[] array = (E[]) Iterables.toArray(elements);
817 Arrays.sort(array, this);
818 return Lists.newArrayList(Arrays.asList(array));
819 }
820
821 /**
822 * Returns an <b>immutable</b> list containing {@code elements} sorted by this
823 * ordering. The input is not modified.
824 *
825 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
826 * elements that are duplicates according to the comparator. The sort
827 * performed is <i>stable</i>, meaning that such elements will appear in the
828 * returned list in the same order they appeared in {@code elements}.
829 *
830 * <p><b>Performance note:</b> According to our
831 * benchmarking
832 * on Open JDK 7, this method is the most efficient way to make a sorted copy
833 * of a collection.
834 *
835 * @throws NullPointerException if any of {@code elements} (or {@code
836 * elements} itself) is null
837 * @since 3.0
838 */
839 public <E extends T> ImmutableList<E> immutableSortedCopy(
840 Iterable<E> elements) {
841 @SuppressWarnings("unchecked") // we'll only ever have E's in here
842 E[] array = (E[]) Iterables.toArray(elements);
843 for (E e : array) {
844 checkNotNull(e);
845 }
846 Arrays.sort(array, this);
847 return ImmutableList.asImmutableList(array);
848 }
849
850 /**
851 * Returns {@code true} if each element in {@code iterable} after the first is
852 * greater than or equal to the element that preceded it, according to this
853 * ordering. Note that this is always true when the iterable has fewer than
854 * two elements.
855 */
856 public boolean isOrdered(Iterable<? extends T> iterable) {
857 Iterator<? extends T> it = iterable.iterator();
858 if (it.hasNext()) {
859 T prev = it.next();
860 while (it.hasNext()) {
861 T next = it.next();
862 if (compare(prev, next) > 0) {
863 return false;
864 }
865 prev = next;
866 }
867 }
868 return true;
869 }
870
871 /**
872 * Returns {@code true} if each element in {@code iterable} after the first is
873 * <i>strictly</i> greater than the element that preceded it, according to
874 * this ordering. Note that this is always true when the iterable has fewer
875 * than two elements.
876 */
877 public boolean isStrictlyOrdered(Iterable<? extends T> iterable) {
878 Iterator<? extends T> it = iterable.iterator();
879 if (it.hasNext()) {
880 T prev = it.next();
881 while (it.hasNext()) {
882 T next = it.next();
883 if (compare(prev, next) >= 0) {
884 return false;
885 }
886 prev = next;
887 }
888 }
889 return true;
890 }
891
892 /**
893 * {@link Collections#binarySearch(List, Object, Comparator) Searches}
894 * {@code sortedList} for {@code key} using the binary search algorithm. The
895 * list must be sorted using this ordering.
896 *
897 * @param sortedList the list to be searched
898 * @param key the key to be searched for
899 */
900 public int binarySearch(List<? extends T> sortedList, @Nullable T key) {
901 return Collections.binarySearch(sortedList, key, this);
902 }
903
904 /**
905 * Exception thrown by a {@link Ordering#explicit(List)} or {@link
906 * Ordering#explicit(Object, Object[])} comparator when comparing a value
907 * outside the set of values it can compare. Extending {@link
908 * ClassCastException} may seem odd, but it is required.
909 */
910 // TODO(kevinb): make this public, document it right
911 @VisibleForTesting
912 static class IncomparableValueException extends ClassCastException {
913 final Object value;
914
915 IncomparableValueException(Object value) {
916 super("Cannot compare value: " + value);
917 this.value = value;
918 }
919
920 private static final long serialVersionUID = 0;
921 }
922
923 // Never make these public
924 static final int LEFT_IS_GREATER = 1;
925 static final int RIGHT_IS_GREATER = -1;
926 }